Clinical Neurophysiology

2013

Peter Trillenberg
Dept. of Neurology
Basic and clinical Neurophysiology

<table>
<thead>
<tr>
<th>Basic neurophysiology</th>
<th>Clinical neurophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify mechanisms that make the nervous system work</td>
<td>Diagnose disease in patients</td>
</tr>
<tr>
<td>Molecules, cells, groups of cells, functional systems</td>
<td>Correlates of functions of the intact human body</td>
</tr>
<tr>
<td>Invasive, time consuming, small number of „subjects“ studied</td>
<td>Reliable, fast, cheap, benefit justifies the risk</td>
</tr>
</tbody>
</table>
focus of neurophysiology

molecules

cells

systems

Clinical Neurophysiology 2013
Peter Trillenberg
parts of a nerve cell

- dendrites
- cell body
- axon
- synapse

summation of input

metabolism

propagation of the signal

transmission of the signal
functions in nerve cells

<table>
<thead>
<tr>
<th></th>
<th>chemical</th>
<th>electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>reception of information</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>calculation</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>signal transport</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>signal transmission</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
biological membranes

- lipid bilayer (glycerole ester)
 - electrical isolation
 - chemical isolation

- membrane proteine
 - signal transduction
 - mechanical stability
 - immune mechanisms
 - transport

Clinical Neurophysiology 2013
Peter Trillenberg
electrical phenomena in nerve cells

1st step: resting state of a membrane patch: Why do nerve cells have a resting potential?

2nd step: action potential of a membrane patch: Why can nerve cells change their electrical properties?

3rd step: propagation of the action potential: Why does the action potential propagate along an axon?
excitable membranes: resting potential

starting situation
- concentration difference between intracellular and extracellular
- conduction across membrane only for kations

chemical gradient

Clinical Neurophysiology 2013
Peter Trillenberg
Excitable membranes: resting potential

Chemical gradient

Ionic current vs. time

Concentration vs. time

Charge vs. time

Clinical Neurophysiology 2013
Peter Trillenberg
Excitable membranes: resting potential

Equilibrium:
- zero current
- positive charges on the outside

\[V_{Na} = \frac{RT}{zF} \ln \left(\frac{c_{IZR}}{c_{EZR}} \right) \]

(Nernst potential)
excitable membranes: resting potential

starting situation
- concentration difference for two varieties of kations
- different conductivities for kations
excitable membranes: resting potential

chemical gradient

ionic current

concentration

charge

Clinical Neurophysiology 2013
Peter Trillenberg
excitable membranes: resting potential

„equilibrium“
- more diffusion of the ions with larger conductivity
- outside charged positively
- equal currents by both kations
- potential across the membrane depends on conductivities
Excitable membranes as a weapon

Electrophorus electricus
Electrical organs with „electroplaques“ (adapted from muscle cells)
500 V, 2 A by using membrane potentials in a serial circuit
Excitable membranes: resting potential

“equilibrium“
- flux „blue in“ balances „red out“
- in the long run breakdown of concentration differences
excitable membranes: resting potential

„equilibrium“
- flux „blue in“ balances „red out“
- in the long run breakdown of concentration differences
electrical phenomena in nerve cells

1st step: resting state of a membrane patch: Why do nerve cells have a resting potential?

2nd step: action potential of a membrane patch: Why can nerve cells change their electrical properties?

3rd step: propagation of the action potential: Why does the action potential propagate along an axon?
excitable membranes: action potential

- depolarisation
- hyperpolarisation

Clinical Neurophysiology 2013
Peter Trillenberg
Excitable membranes: action potential

Starting situation:
- K conductivity and Na conductivity small ($K^+ > Na^+$)
excitable membranes: action potential

1st step in the action potential:
- increase in Na conductivity
- reversal in the membrane potential: „depolarisation“
excitable membranes: action potential

2nd step in the action potential:
- increase in the K conductivity
- membrane potential returns to baseline: "repolarisation"
excitable membranes: action potential

3rd step in the action potential:
- Na channels inactivated
- membrane potential below resting potential: „hyperpolarisation“
Excitable membranes: voltage gated sodium channels

3 states:
- open
- closed
- inactivated

Transition between states with voltage dependent rates

Clinical Neurophysiology 2013
Peter Trillenberg
excitable membranes: voltage gated sodium channels

resting potential

(open) ➔ (inactivated)

depolarized

(open) ➔ (inactivated)

transition to ☯:
triggers chain reaction

Clinical Neurophysiology 2013
Peter Trillenberg
Excitable membranes: voltage gated sodium channels

State of channels influences membrane potential

Membrane potential influences state of channel
→ excitable membranes: action potential

Trigger for the action potential:
- abrupt opening of sodium channels
Simplified version of the Hodgkin-Huxley equations

\[C \frac{dV}{dt} = g_{Na} M(V)^3 (1 - R)(V - E_{Na}) + g_K R^4 (V - E_K) - g_{\text{leak}} (V - E_{\text{leak}}) + I \]

\[\frac{dR}{dt} = \frac{1}{\tau_R(V)} (- R + G(V)) \]

\[M(V) = \frac{\alpha}{\alpha + \beta}; \alpha = -0.1 \cdot \exp\left(\frac{V + 45}{10}\right) - 1 \]

\[G(V) = \frac{S \cdot (N + S \cdot (1 - H))}{1 + S^2}; S = 1.2714 \]

\[\tau_R(V) = 1 + 5 \cdot \exp\left(-\frac{(V + 60)^2}{55^2}\right) \]

\[N(V) = \frac{\alpha}{\alpha + \beta}; \alpha = -\frac{V + 60}{\exp\left(-\frac{V + 60}{10}\right) - 1} \]

\[H(V) = \frac{\alpha}{\alpha + \beta}; \alpha = 0.07 \cdot \exp\left(-\frac{V + 70}{20}\right); \beta = \frac{1}{\exp\left(-\frac{V + 40}{10}\right) + 1} \]

RINZEL J (1985) EXCITATION DYNAMICS - INSIGHTS FROM SIMPLIFIED MEMBRANE MODELS. FEDERATION PROCEEDINGS 44: 2944-2946

→ Clinical Neurophysiology 2013
Peter Trillenberg
Phase plot of Rinzel system

I = 7.095 µA

I = 10 µA

Schwelle: 7.09857705

RINZEL J (1985) EXCITATION DYNAMICS - INSIGHTS FROM SIMPLIFIED MEMBRANE MODELS. FEDERATION PROCEEDINGS 44: 2944-2946

Clinical Neurophysiology 2013
Peter Trillenberg
excitable membranes: voltage gated sodium channels

Tetrodotoxin: blocks sodium channels
high concentration in Fugu
electrical phenomena in nerve cells

1st step: resting state of a membrane patch: Why do nerve cells have a resting potential?

2nd step: action potential of a membrane patch: Why can nerve cells change their electrical properties?

3rd step: propagation of the action potential: Why does the action potential propagate along an axon?
propagation of the action potential

Depolarized membrane patch

axon

Clinical Neurophysiology 2013
Peter Trillenberg
propagation of the action potential

depolarisation to threshold

Sodium channels inactivated

axon
propagation of the action potential

Concentration of the current at Ranvier nodes
Fortgeleitetes Aktionspotential

Intracellular recording

Surface recording

Clinical Neurophysiology 2013
Peter Trillenberg
sensory neurography

Clinical Neurophysiology 2013
Peter Trillenberg
sensory neurography

Latenz: 2.8 ms; d=14 cm
NLG = ?

Clinical Neurophysiology 2013
Peter Trillenberg
Suggested reading